

Overcoming Challenges in Solar Energy Siting Projects in Maryland

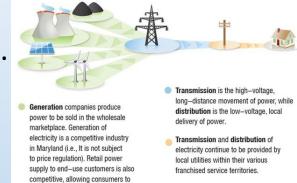
Greenhouse Gas Mitigation Working Group June 21, 2022

Kevin Clark
Urban Grid Solar
Project Developer
Mobile - 410.490.5113
kevin.clark@urbangridco.com

Greg Samilo
Project Development Manager
CS Energy
P 732.515.8094
gsamilo@csenergy.com

Bob Sadzinski, Acting Director
Powe Plant Research Program
Maryland Department of Natural Resources

Today's Presentation


- Maryland's Electricity Facts
- Who is PJM, PSC, and the permitting process
- Overview of the Renewable Portfolio Standards
- Status of Solar Facilities in Maryland
- Status of Maryland Ag lands converted to solar
- Summary of dual-use opportunities
- Governor's Renewable Energy Development and Siting Task Force
- Recommendations from the industry

Maryland's Electricity Facts

- Annually uses 60,000,000 MWh of electricity
- Import 40% of our electricity from out of state.
- Instate annual electricity production:
 - Calvert Cliffs Nuclear Power Plant accounts for 41%
 - Natural Gas 38%
 - Coal 9%
 - Hydroelectric 5%
 - Renewable Energy (Solar, Wind, small hydro, biomass (wood), solid waste, and landfill gas) -7%

 There are 77,199 solar "facilities" and 105 non-solar generation facilities in Maryland

choose their own supplier.

Utility-Scale Renewable Energy MARYLAND Permitting in Maryland DEPARTMENT OF NATURAL RESOURCES

- PJM Interconnection Agreement
- Public Service Commission Certificate of Public Convenience and Necessity (CPCN)
- County/City Permits
- State and Federal Permits

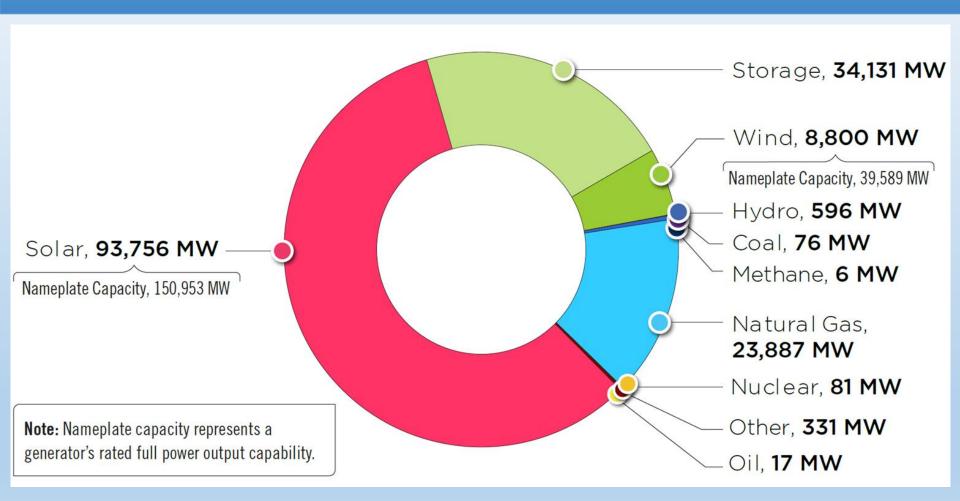
PJM

- PJM is a regional transmission organization
 (RTO) that oversees the flow of electricity in our
 region
- Coordinates the movement of electricity around the mid-Atlantic (13 states and DC).
- Maryland is entirely with the PJM grid and PJM is the largest grid operator in the US.
- New electricity generators must apply to obtain PJM approval to connect to the grid (two year study process).

- The number of New Service Requests has more than tripled over the past three years.
 - Due to a surge of renewable energy and energy storage projects submitting interconnection requests
 - The Interconnection Agreement is critical in financing the project
 - PJM is modifying its interconnection process due to delays in the interconnection study process
- In PJM over 2,500 solar or wind Projects waiting for approval.
 - Of these, 45 are solar projects in Maryland
 - Equal 451 MWs
- Feb. 2022 PJM has requested a two-year moratorium for all project reviews.
 - This will allow those projects in the queue to be assessed
 - PJM Reform Task Force has been formed to address the issue
 - What about those projects wanting to connect to the grid?

Update: PJM submitted its interconnection reform filing to FERC on June 14th and requested approval by October 3rd

Significant Project Approval Delays in PJM



Projects that have submitted an interconnection request to PJM and have not received an Interconnection Agreement will follow these timelines:

Interconnection Request Filed	Anticipated Interconnection Agreement Date
Nov 2017 – Mar 2018	Oct 2022
Apr 2018 – Sep 2020	Sep 2024 – April 2025
Oct 2020 – Sep 2021	L 0000 .
Oct 2021+	Jun 2026+

PJM Requested Capacity Interconnection: April 2022

Public Service Commission

- Appointed by the Governor with Senate advice and consent, the Commission's five members serve fiveyear terms
- Generation:
 - Certificate of Public Convenience and Necessity if > 2MWs
 - Developer submits an Application
 - Referred to a PULJ
 - Application reviewed by intervening parties (PPRP, OPC, PSC Staff and others)
 - PPRP coordinated the statewide review of the Project including:
 - the stability and reliability of the electric syster
 - · economics;
 - aesthetics;
 - historic sites;
 - aviation safety;

Public Service Commission and Local Permits

PSC

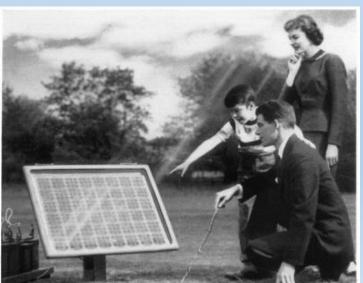
- makes CPCN decisions through a formal adjudication process.
- Gives authority to construct with conditions

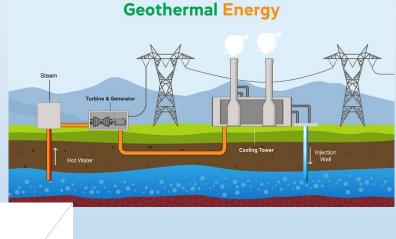
County/City

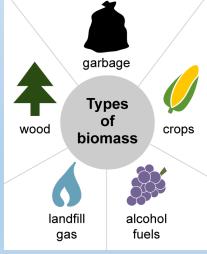
- Encouraged to Intervene in the CPCN Process
- Reviews site plans
- <u>New</u>: the Applicant must meet with County/City representatives a minimum of 60 days before the CPCN application is submitted.

Maryland's Renewable Portfolio Standard (RPS)

- 1999 Deregulation consumers can choose their electricity supplier
- Siting mandates for power plants ended.
- RPS was <u>legislatively mandated</u> first in 2004 and amended frequently.
 - Mandates utility companies to obtain electricity from renewable energy sources or make alternative compliance payments.
 - Incentivizes renewable energy projects through tax credits, grants, loans, and renewable energy credits (RECs).
 - REC = 1 MWh of electricity
 - In-state power companies can sell their RECs out-of-state.




Maryland's Renewable Portfolio Standards



Renewable Energy includes

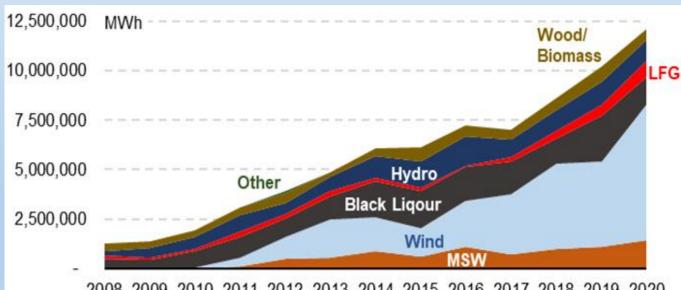
Benefits of Maryland's Renewable Portfolio Standard MARYLAND DEPARTMENT OF NATURAL RESOURCES

- Increases Maryland's energy diversification
- Lowers the cost of renewable energy to consumers
- Reduces water usage from coal and gasfired power plants
- Develop clean energy businesses and workforces in Maryland.
- Reduces greenhouse gas emissions

How a RPS works

10/13 states and DC have an RPS in PJM States vary their RPS eligible resources and goals through legislation.

RPS is a state mandate that requires electricity utilities to purchase electricity from renewable energy suppliers.


- Each certified renewable energy generator earns renewable energy credits (RECs) for each MWh of electricity produced.
- May make Alternative Compliance Payments (ACPs)
- But there are mandates to purchase from certain renewable energy sources

Maryland's Two Tiers for Renewables

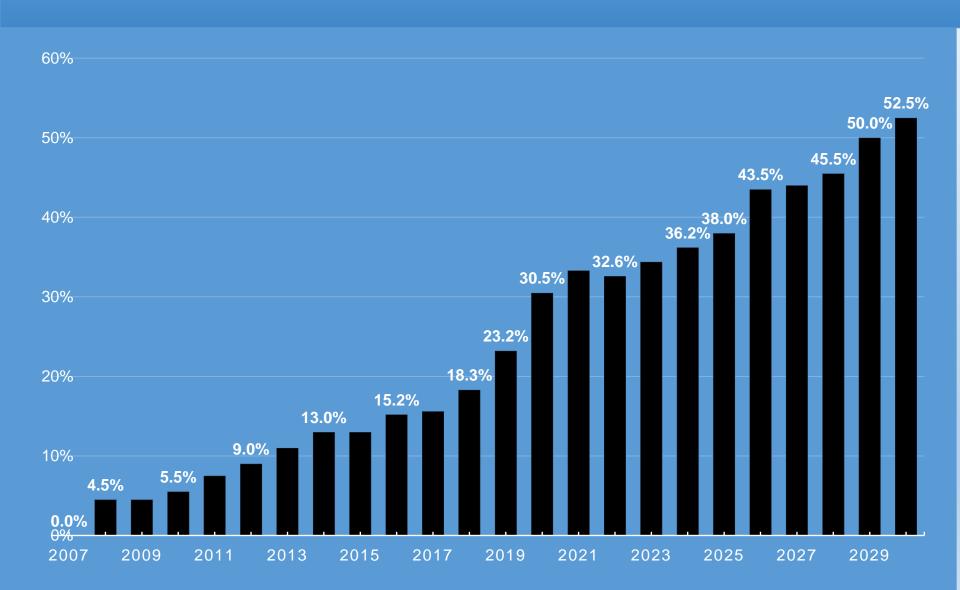
- Tier I Includes wind, small hydro, biomass (wood), solid waste, and landfill gas and can be from out of state
- Tier II In-state Large Hydroelectric (Conowingo)
- Special categories and increased cost of RECs for solar, wind and geothermal, these are called "carve-outs":
 - Solar SRECs
 - Wind ORECs
 - Geothermal GRECs

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

RECs Retired for Tier 1 Non-Carve-out Maryland RPS Compliance, by Fuel Source

Source: PJM-GATS.

Maryland's Current RPS Requirements



Maryland RPS – Percentage of Renewable Energy Required

	TIER 1						
Year	Non- Carve out	Solar	Off-shore Wind	Geo- Thermal	TIER 1 TOTAL	TIER 2 TOTAL (large Hydro)	TOTAL RPS
2022	24.6	5.5	0	0	30.1	2.5	32.6
2023	25.85	6	0	0.05	31.9	2.5	34.4
2024	~25.2	6.5	~1.9	0.15	33.7	2.5	36.2
2025	~26.4	7	~1.9	0.25	35.5	2.5	38
2026	~17.3	8	~15.2	0.5	41	2.5	43.5
2027	~16.1	9.5	~15.2	0.75	41.5	2.5	44
2028	~15.8	11	~15.2	1	43	2.5	45.5
2029	~18.8	12.5	~15.2	1	47.5	2.5	50
2030	~19.3	14.5	~15.2	11	50	2.5	₁ 52.5

Total Renewable Portfolio Standards (RPS) Total by Year

Three Types of Solar Facilities in Maryland

- Rooftop Solar: A solar energy generating system directly installed on a customer's property.
 - Owned by the customer or a third-party.
 - Compensates owner for electricity delivered onto the grid (net energy metering).
- Community Solar: A solar energy generating system designed to make solar energy accessible to residents and businesses that may be unable or unwilling to install solar on their properties, residences, or buildings.
 - Owned by a subscriber organization.
 - Increased to 5 MWs
- <u>Utility-Scale Solar</u>: A solar energy generating system that sells electricity through power purchase agreements or into the wholesale electricity market.
 - Owned by a generation company.
 - May need a CPCN if over 2 MWs.

Total Capacity (MW)

6

83

220

370

15

731

1,425

18

Maryland's Non-CPCN Solar Facilities

Number of Projects

2,513

17,611

27,609

26,059

203

534

74,529

(kW)

 $0 \text{ to } \leq 3$

> 3 to 6

> 6 to 10

> 10 to 50

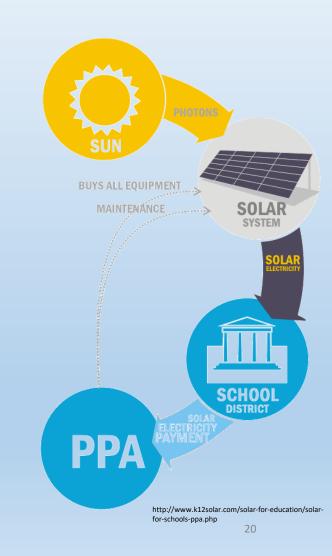
> 50 to 100

> 100

Total

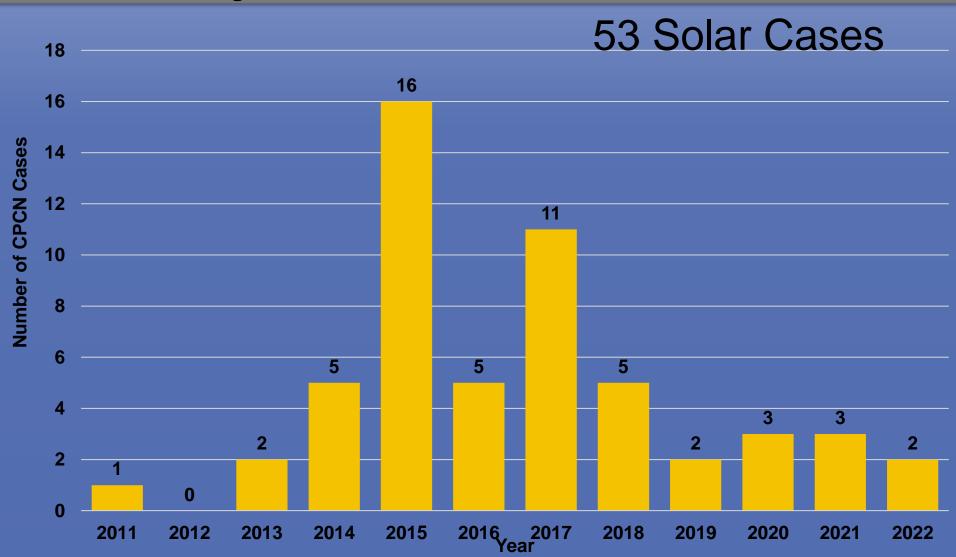
Utility-Scale Solar Projects in Maryland

- Utility-Scale Solar Projects (> 2 MWs) generally require a CPCN to construct through the Public Service Commission
- PJM Interconnection Agreement
- Typically see these on large tracts of land
- Numerous Areas to examine including:
 - Wetlands,
 - Critical Area
 - Historical Trust
 - DNR for RTE
- Local Permits
 - Site Plan
 - Lighting
 - FCA

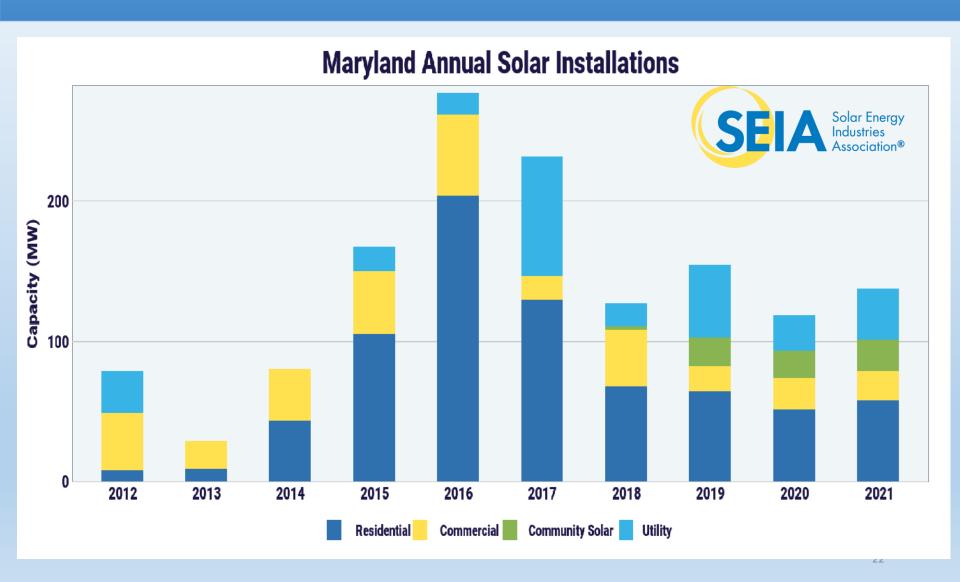


Status of Utility-Scale Solar Projects (>2MWs) in Maryland since 2011.

- MARYLAND
 DEPARTMENT OF
 NATURAL RESOURCES
- There have been approximately
 53 solar CPCN cases filed since
 2011.
 - 49 granted a CPCN
 - 1 Denied
 - 3 Pending a PSC decision


Note only 7 are operational

- The largest project to come online is Great Bay Solar at 150 MWs.
- 50% of these facilities are on the Eastern Shore.


Solar CPCN Cases by Year.

Solar Generation in Maryland, 2008-2020

PPRP is Encouraging Dual-Use Utility Scale Solar

- Pollinators
- Crops
- Sheep

Many utility-scale solar developers have incorporated pollinator habitat but none yet have incorporated crops or sheep between panels.

Solar Facility Calculation

50 MW Solar Facility

- 1 MW = ~8 acres of land
- Solar panels would cover 400 acres
- Output estimate computing panel efficiency and average hours of sunlight equals 122,640 MWh per year
- This facility could annually power over 11,000 homes

Projected Acres of Utility-Scale Solar Needed to Reach the RPS Goal.

				Estimated	Estimated		
	Utility Scale	Estimated	Total	Annual UPV	Annual		
	Required to	Rooftop	Solar	Capacity	Rooftop		
	Meet RPS	Solar	Capacity	Needed	Capacity	Assuming 5	Assuming 8
YEAR	(MWs)	(MWs)	(MW)	(MW)	Needed (MW)	acres/MW	acres/MW
2022	798	1,234	2,032	254	254	3,990	6,384
2023	868	1,304	2,172	70	70	4,338	6,941
2024	938	1,374	2,312	70	70	4,690	7,504
2025	1,006	1,442	2,448	68	68	5,030	8,048
2026	1,184	1,487	2,671	178	45	5,922	9,475
2027	1,453	1,554	3,007	269	67	7,266	11,625
2028	1,725	1,622	3,347	272	68	8,625	13,800
2029	2,000	1,691	3,691	275	69	10,000	16,000
2030	2,370	1,783	4,153	369	92	11,848	18,956

Based on utility-scale being 50% of the input from 2022-2025 and then 80% thereafter.

Total acres needed to reach the 2030 goal: 18,956 - 6,384 = 12,572 but up to 33,000 acres (REDS)

REDS Report Updated Data Concerning Estimated Farmland Impacted by Solar.

2022 PPRP Analysis

- We are currently meeting our Solar Carve-Out within the RPS
- The future solar conditions are unpredictable due to panel, inverter, and transformer supplies, overseas distribution issues, and PJM.
- Distributed (Rooftop) Solar has expanded exponentially.
- Projected energy usage statewide will likely decrease.
- Utility-scale solar <u>installations</u> have slowed significantly.
- Efficiency of panels has also increased and will continue to increase.
- Models are educated guesses based on very dynamic in-state processes include changing RPS goals, PJM interconnection issues, energy efficiency is increasing, changing solar incentives from states and the federal government.

Maryland's Solar Projections

Utility Scale Solar:

- Is presently on 3,645 acres in Maryland
- By 2030, 14.5% from Solar
- Results in 12,000 -33,000 more acres to reach the instate solar goal

Agricultural Lands

- Currently 2,000,000 acres
- UPV would need less than 1% to 1.7% of the available 2 million acres of existing Ag lands in Maryland.

Agrivoltaics- Dual Use

- Tomatillos are just one of the many types of produce which grows between the rows of solar panels at Jack's Solar Garden in Longmont, Colo. Jack's is a 1.2-MW, five-acre community solar farm and is the largest agrivoltaic research project in the U.S.

Various Crops under Solar Panels in Colorado.

Solar on Closed Landfills

Annapolis Solar on a closed Annapolis landfill

18 MW floating panel solar system

Steep slopes

Solar on landfill in AA County....

https://www.eyeonannapolis.net/2022/03/solar-park-coming-to-former-glen-burnie-landfill/

Governor's Renewable Energy Development and Siting Task Force (REDS)

Report can be found at:

https://governor.maryland.gov/energy-task-force/#:~:text=Continuing%20his%20commit ment%20to%20skilled,energy%20projects%2

0in%20the%20state.

Goal: Developed consensus-based recommendations on the siting of new solar and wind energy projects in the state.

14 REDS Recommendations

- 1. Develop Additional Incentive Programs
- 2. Consider Options for Updating and Streamlining the CPCN Process
- Expand Rooftop Solar and Other Preferred Applications by Increasing the Net Energy Metering Cap
- 4. Accelerate Residential Rooftop Solar Permitting
- 5. Evaluate New State and Local Government Facilities and Land for Solar Potential
- 6. Establish an Offset Requirement for Farmland Development Similar to Maryland's Existing Forest Offset
- 7. Degraded Lands with Potential for Solar Development
- 8. SmartDG+ Improvements
- 9. Examine Transmission and Distribution Constraints
- **10.** Assess Environmental Justice Siting Impacts
- 11. Develop Streamlined Standard to Review and Approve Energy Storage Projects
- 12. Expand Efforts to Develop Microgrids in Maryland by Leveraging Solar in the Built Environment
- 13. Expansion of Maryland Green Registry
- 14. Promote Complementary Agricultural Practices Like Agrovoltaics and Pollinator Habitat

Changes Due to REDS Recommendations

- MEA has significant incentive programs for residential solar and those continue to expand.
- CPCNs now have a legislatively mandated 6-month review period.
- Net Metering Solar cap has been increased to 3,000 MWs.
- PPRP's Smart DG+ has been expanded to include brownfield sites.
- The PSC's RM 72 streamlined the review process for Solar CPCN cases:
 - Requires the Applicant to meet with the county, 60 days before an application is submitted to the PSC, and
 - Instituted a CPCN Application checklist

Recommendations to The Committee

- Support from the work group for the study prompted by SB 334/HB624. This Bill would require long-term contracts for renewable energy to support a portion of the Standard Offer Service in Maryland.
- Expand agrivoltaic incentive programs for communitysolar and utility-scale projects.
- Expand incentive programs for solar on brownfield sites, landfills, parking lots, etc.

Questions

Kevin Clark
Urban Grid Solar
Project Developer
Mebile: 410,400,511

Mobile: 410.490.5113

kevin.clark@urbangridco.com

Greg Samilo
Project Development Manager
CS Energy
P: 732-515-8094
gsamilo@csenergy.com

Bob Sadzinski

Acting Director, PPRP

Maryland Dept. Of Natural

Resources

Mobile: 443-699-2092

Bob.Sadzinski@Maryland.gov